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movement disorders

Emerging therapies for childhood-onset

Lindsey Vogt™*, Vicente Quiroz®* and Darius Ebrahimi-Fakhari®®

Purpose of review

We highlight novel and emerging therapies in the treatment of childhood-onset movement disorders. We
structured this review by therapeutic entity (small molecule drugs, RNA-targeted therapeutics, gene
replacement therapy, and neuromodulation), recognizing that there are two main approaches to treatment:
symptomatic (based on phenomenology) and molecular mechanism-based therapy or ‘precision medicine’

(which is disease-modifying).

Recent findings

We highlight reports of new small molecule drugs for Tourette syndrome, Friedreich’s ataxia and Retft
syndrome. We also discuss developments in gene therapy for aromatic l-amino acid decarboxylase
deficiency and hereditary spastic paraplegia, as well as current work exploring optimization of deep brain
stimulation and lesioning with focused ultrasound.

Summary

Childhood-onset movement disorders have traditionally been treated symptomatically based on
phenomenology, but focus has recently shifted toward targeted molecular mechanism-based therapeutics.
The development of precision therapies is driven by increasing capabilities for genetic testing and a better
delineation of the underlying disease mechanisms. We highlight novel and exciting approaches to the
treatment of genetic childhood-onset movement disorders while also discussing general challenges in
therapy development for rare diseases. We provide a framework for molecular mechanism-based treatment
approaches, a summary of specific treatments for various movement disorders, and a clinical trial readiness

framework.
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INTRODUCTION

Movement disorders are a group of neurological
disorders in which patients face challenges with
the control and execution of movements. Tradition-
ally, movement disorders have been classified by
phenomenology: excess activation of central motor
pathways (hyperkinetic: dystonia, chorea, athetosis,
myoclonus, stereotypies, tics, tremor); decreased
voluntary motor function (hypokinetic: hypo/brady-
Kinesia, rigidity); impaired coordination (e.g.
ataxia); and changes in muscle tone (i.e. spasticity).
As phenomenology does not reflect causality, move-
ment disorders need to be further differentiated by
cause (e.g. genetic/primary or acquired/secondary).

Phenomenology, in addition to serving as the
basis for classification, has traditionally guided
treatment approaches. Symptomatic treatments
such as medications (e.g. levodopa/dopamine recep-
tor agonists, anticholinergics, and benzodiazepines)
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or surgical procedures (e.g. deep brain stimulation or
selective dorsal rhizotomy) target the phenomenol-
ogy rather than the underlying molecular cause.
Benefits of this approach include the use of common
strategies to treat symptoms across different causes.
Limitations include challenges of treating patients
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KEY POINTS

e Therapeutic modalities for childhood-onset movement
disorders target disease mechanisms at DNA, RNA,
protein, cellular and circuit levels.

e There is not only a growing list of specific symptomatic
treatments but also molecular mechanism-based disease
modifying therapies.

e There are not only unique challenges but also
opportunities for creating therapies for childhood-onset
movement disorders.

e Broad access to genetic testing and longitudinal natural
history studies are key to establishing clinical
trial readiness.

with mixed movement disorders, adjusting to
changes in phenomenology over time, medication
side effects, interactions and polypharmacy, as well
as the inability to address disease-associated comor-
bidities (e.g. developmental delay or epilepsy).

With increasing capacity for genetic diagnostics,
two important concepts have emerged: genetic het-
erogeneity — one phenotype caused by variants in
several genes; and phenotypic pleiotropy — variants
of the same gene causing several movement disor-
ders. These concepts, combined with an increased
understanding of disease mechanisms, and the lim-
itations of available symptomatic therapies, have
led to a push toward molecular-mechanism-based
treatments (‘precision medicine’). We define these
as disease-modifying therapies that are rationally
targeted against specific molecular structures impli-
cated in disease pathogenesis.

In this review, we summarize recent develop-
ments in both symptomatic and molecular mecha-
nism-based treatments for childhood-onset
movement disorders, with a focus on emerging
themes. We have categorized these novel approaches
by mechanism (Fig. 1) and target level (Fig. 2).

SMALL MOLECULE DRUGS

Small molecule drugs remain a cornerstone of thera-
peutics because of their ease of delivery and relatively
lower manufacturing costs. Many small molecule
therapies are symptomatic therapies that have been
used for decades. Some small molecule drugs have
demonstrated higher efficacy in specific diseases
(Table 1 and Fig. 2), allowing a more targeted approach.

Ecicopam for Tourette syndrome
Tourette syndrome is a neuropsychiatric disorder

characterized by persistent vocal and motor tics that
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can be disruptive to day-to-day life. The gold stand-
ard treatment for Tourette syndrome is comprehen-
sive behavioral intervention for tics [1]; however,
many children require adjunctive pharmacother-
apy. Traditional dopamine antagonists are often
limited by side effects. Ecicopam is a more selective
dopamine 1 receptor antagonist, which was proven
to be effective in a recent double-blind, randomized,
placebo-controlled trial. Importantly, there were
fewer side effects, including less weight gain and
no drug-induced movement disorders [2"].

High-flow oxygen for ATP1A3-related
alternating hemiplegia of childhood

Alternating hemiplegia of childhood is a disorder on
the ATP1A3 spectrum [3] causing paroxysmal
attacks of unilateral or bilateral weakness or dysto-
nia [4]. Flunarizine, the most used medication, has
variable effectiveness. Recent case reports high-
lighted that early treatment with high-flow oxygen
may help shorten attacks [5,6]. High-flow oxygen
had no effect on event frequency but improved
quality of life, allowing for reduced benzodiazepine
use [6]. This requires further research, ideally in
blinded placebo-controlled trials.

Cannabinoids

Since the introduction of cannabinoids for epilepsy
and chronic pain, there has been increasing interest
in using cannabinoids for symptomatic treatment of
dystonia. A trial in 2018 demonstrated improve-
ment in spasticity, dystonia, and quality of life in
patients treated with two formulations of cannabis.
This was limited by a small sample size and lack of a
control group [7]. Further studies are needed to
define the role of cannabinoids in childhood-onset
movement disorders.

Stimulants for paroxysmal movement
disorders

Paroxysmal movement disorders are a clinically and
molecularly heterogeneous group. For some, such as
PRRT2-associated paroxysmal kinesigenic dyskine-
sia, specific treatments exist [8]. There is evolving
evidence to support the use of stimulants: Lisdex-
amfetamine [9] and dextroamphetamine [10] have
been shown to benefit nonkinesigenic paroxysmal
dyskinesia in cases of KCNMA 1-related disorder, and
methylphenidate has been observed to improve
chorea in cases of NKX2.1-related disorder [11,12].

Caffeine for ADCY5-related disorder
Heterozygous variants in ADCYS5, encoding adenylyl

cyclase 5, lead to a hyperkinetic movement disorder
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FIGURE 1. Overview of existing and emerging therapies fall for childhood-onset movement disorders. Therapeutic approaches
fall into three categories: traditional phenomenology-based symptomatic treatment approaches which includes small molecule
drugs, nonpharmacological treatments (e.g. physical therapy, equipment and adaptive devices), and invasive or surgical
approaches (i.e. botulinum toxin injections, selective dorsal rhizotomy, or deep brain stimulation). A subset of phenomenology-
based approaches has established efficacy in specific causes, these are further highlighted in Table 1 and include small
molecule drugs (e.g. carbamazepine for paroxysmal kinesigenic dyskinesia), dietary treatments (e.g. ketogenic diet for
paroxysmal exercise-induced dyskinesia), and deep brain stimulation (e.g. for TOR1A-associated dystonia). An emerging and
growing category of newer treatments is based on the molecule mechanism, usually for genetic movement disorders. We
defined these as disease-modifying therapies that are rationally targeted against specific molecular structures implicated in
disease pathogenesis. A crucial first step is the recognition of the main cell autonomous molecular mechanism upstream of
cellular, metabolic or circuitry changes. Broad categories include bi-allelic loss-of-function variants, heterozygous variants
leading to haploinsufficiency, and heterozygous variants leading to a dominant-negative effects or toxic gain of function.
Different therapeutic entities can be rationally chosen and matched to these key mechanisms, supporting testing and
development as highlighted in Fig. 3. Additionally, specific variants, often in individual cases or small number of individuals,
might be amenable to antisense oligonucleotide (ASO), the classic example would be variants that infroduce a cryptic splice

site that can be blocked to restore a normal splicing pattern.

with early-onset chorea, dystonia, myoclonus, noc-
turnal dyskinesia, and characteristic facial dyskinesia
[13]. Most variants causing ADCYS5-related disorder
are believed to be gain-of-function mutations result-
ing in increased cCAMP levels in striatal neurons [14].
Adenosine 2A antagonists, including caffeine, have
thus been explored as therapeutics. A retrospective
survey of 30 patients treated with caffeine [135]
reported significant improvement in dyskinesia, with
improvement also noted in hypotonia, dysarthria,
pain, attention, concentration, sleep quality, and
mood in some. Given the relatively good safety pro-
file, a trial of caffeine, in addition to other treatment
options, should be considered.

1040-8703 Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.

Chelation for pantothenate kinase-
associated neurodegeneration

Pantothenate kinase-associated neurodegeneration
(PKAN) is a form of neurodegeneration with brain
iron accumulation that presents with progressive
dystonia and parkinsonism [16]. The iron chelator,
deferiprone, was tested in a randomized, double-
blind, placebo-controlled trial [17]. Deferiprone
reduced iron storage in the brain and improved
dystonia in patients with late-onset PKAN (after
age 6years), but not early-onset PKAN [17]. This
study was limited by small sample size and study
duration. It is unclear if further studies will attempt
to confirm the use of chelation therapy, as more
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Table 1. Existing therapeutics for childhood-onset movement disorders that are informed by the underlying cause

Leading Level of
Disorder Gene phenomenology Treatment evid <
ADCY5-related disorder (CHOR/DYT-ADCY5) ADCY5 Chorea, dystonia Caffeine 415]
Theophylline 4 [38]
Alternating Hemiplegia of Childhood ATPTA3 Hemiparesis, dystonia Flunarizine 4 [39,40]
High-flow oxygen 4 [6]
Aromatic l-amino acid decarboxylase (AADC) DDC Dystonia Eladocagene 3b [59]
deficiency exuparvovec
Ataxia telangiectasia ATM Ataxia Nicotinamide 3c [41]
Ataxia with vitamin E deficiency TTPA Ataxia High-dose vitamin E 4 [42]
Cerebrotendinous xanthomatosis CYP27A1 Ataxia, spasticity Chenodeoxycholic 4 [43]
acid
Dopa-responsive dystonia (DYT/PARK-GCHI, GCHI1 Dystonia Levodopa 4 [44]
Segawa disease)
Episodic ataxia 1 KCNAT Ataxia Acetazolamide 3b [45]
Carbamazepine 3b [45]
Episodic ataxia 2 CACNATA Ataxia Acetazolamide 3b [46]
4-aminopyridine 4 [47]
Friedreich’s ataxia FXN Ataxia Omaveloxolone 1 [20]
GNAO I-related disorder (DYT/CHOR-GNAOI) GNAOI1 Chorea, dystonia Zinc 526"
Hereditary spastic paraplegia type 50 (SPG50, AP4AM1 Spasticity AAV9/APAMI 5 [63]
HSP-APAM1)
Hypermanganesemia SLC30ATOSLC39A14 Dystonia Intravenous sodium 4 [48]
calcium edetate
Myoclonus-dystonia (DYT-SGCE) SGCE Myoclonus, dystonia Zonisamide 1 [49]
NKX2. 1-related disorder (CHOR-NKX2.1, brain- NKX2.1 Chorea Methylphenidate 4111]
lung-thyroid disease)
Pantothenate kinase-associated neurodegeneration ~ PANK2 Dystonia Deferiprone 1[17]
(NBIA/DYT-PANK?2)
Paroxysmal exercise induced dyskinesia/GLUT1 SLC2A1 Choreoathetosis, dystonia Ketogenic diet 3c [50]
deficiency
Paroxysmal kinesigenic dyskinesia (PxMd-PRRT2) PRRT2 Paroxysmal dyskinesia (chorea, Carbamazepine 3b [8]
dystonia)
Paroxysmal nonkinesigenic dyskinesia PNKD Paroxysmal dyskinesia (dystonia, Oxcarbazepine 4 [51]
chorea)
Clonazepam 4 [52]
KCNMA1 Paroxysmal dyskinesia (chorea, Lisdexamfetamine 4 1[9]
dystonia), ataxia, cataplexy
Pyruvate dehydrogenase deficiency DLAT, PDHA1, PDHB, Ataxia, dystonia, paroxysmal Ketogenic diet 4 [53]
PDHX, PDP1, PDK3 dyskinesia
Rett syndrome MECP2 Stereotypies, dystonia Trofinetide 1[24%
Biotin-thiamine-responsive basal ganglia disease SLC19A3 Dystonia Thiamin +/- biotin 4 [54]
Tourette syndrome - Tics Ecopipam 129
Wilson’s disease ATP7B Dystonia D-penicillamine 3b [55]

“Levels of evidence: 1 - evidence obtained from a systematic review of all relevant randomized control trials; 2a - evidence obtained from at least one properly
designed randomized control trial; 3a - evidence obtained from well designed pseudo-randomized control trials (alternative allocation); 3b - evidence obtained
from comparative studies (including systematic review of such studies) with concurrent controls, case-control studies, interrupted time series with a control group;
3c - evidence obtained from comparative studies with historical control, two or more single arm studies, interrupted time series without a parallel control group; 4
- evidence obtained from case series; 5 - evidence obtained from expert opinion without clinical appraisal, or based on physiology, based on bench research or

historically based clinical principles.

targeted gene-based therapies are under develop-
ment [18].

Omaveloxolone for Friedreich’s ataxia

Friedreich’s ataxia (FRDA) is an autosomal-recessive
triplet-repeat disorder causing a syndrome of

1040-8703 Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.

progressive ataxia, cerebellar dysfunction, sensory
neuropathy, lower limb spasticity, and hypertrophic
cardiomyopathy. Oxidative stress is a prevailing
disease mechanism in FRDA. Omaveloxolone, a
nuclear factor erythroid 2-related factor 2 and
nuclear factor kappa B inhibitor, is implicated in
cellular response to oxidative injury [19]. Based on a
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positive double-blind, randomized, placebo-con-
trolled study, the Food and Drug Administration
(FDA) approved omaveloxolone for patients older
than 16 years, with the caveat that younger patients
may have better response [20-22]. The impact on
disease progression long-term remains to be estab-
lished [21].

Trofenitide for Rett syndrome

Heterozygous loss-of-function variants in MECP2
cause Rett syndrome in female individuals, a pro-
gressive neurodevelopmental disorder characterized
by regression of language and motor skills, epilepsy,
and prominent movement disorders, including dys-
tonia and stereotypies. Trofinetide is a synthetic
analog of glycine-proline-glutamate, the N-terminal
tripeptide of the insulin-like growth factor 1, with
multiple putative mechanisms of action [23]. A
recent phase 3 study demonstrated improvement
in Rett syndrome-associated behaviors and global
impression, including motor skills [24®], leading to
FDA-approval for ages 2 and older [23]. The impact
of trofinetide on movement disorders in Rett syn-
drome remains to be established.

Future promise in small molecule therapies

Despite advances in our ability to delineate the
genetic causes of rare neurological diseases, it is
estimated that specific therapies exist for less than
5%. Informed by disease-relevant cellular pheno-
types, automated and unbiased high-throughput
small molecule screens have the potential to
uncover new therapeutic targets. This approach is
starting to be applied to rare genetic movement
disorders, with promising preclinical results. Exam-
ples include the recent discovery of a novel small
molecule modulator of protein trafficking for adap-
tor-protein complex 4-related hereditary spastic par-
aplegia [25"] and zinc as a novel treatment for
GNAO]I-related disorder [26™].

RNA-TARGETED THERAPIES

Antisense oligonucleotides (ASO) are an increas-
ingly common targeted therapy in neurology [27].
ASO therapy involves single-stranded antisense
oligonucleotides, which are delivered to tissues
of interest and subsequently exert their effect
on gene expression. Their effects can range from
degradation of the target RNA transcript, blocking
translation of a specific region, or performing
splicing modification [28] (Figs. 1 and 2). ASOs
targeting the CNS are delivered intrathecally to
circumvent the blood-brain barrier. In addition

336 www.co-pediatrics.com

to ASOs, other techniques that act on RNA include
small molecule splice modifiers or RNA interfer-
ence [27].

Antisense oligonucleotides in Huntington’s
disease

Huntington’s disease is an autosomal-dominant tri-
nucleotide repeat disorder thought to result from
toxicity of mutant huntingtin protein. ASO therapy
attempts to reverse this by lowering levels of mutant
huntingtin. Clinical trials have been controversial.
Tominersen, which targets wild-type and mutant
huntingtin, showed efficacy in transgenic animal
models and target engagement in individuals with
Huntington’s disease, leading to a dose-dependent
reduction in cerebrospinal fluid (CSF) levels of hun-
tingtin [29]. A recent phase 3 study, however, was
stopped after no benefit was observed and a subset of
treated patients showed decline compared with pla-
cebo [30™]. Post hoc analyses suggested that
younger participants may benefit from tominersen.
This hypothesis is being tested in a phase 2 trial
(NCT05686551). Other ASO approaches to Hunting-
ton’s disease include allele-selective ASO which lack
potential detrimental effects from impairing wild-
type huntingtin protein but are limited by the
inability to target the entire Huntington’s disease
population and potential off-target effects. New
therapies including RNAi are currently being inves-
tigated [31].

Preclinical antisense oligonucleotide therapy
in ataxia telangiectasia

Ataxia telangiectasia is an autosomal-recessive pro-
gressive ataxia caused by homozygous loss-of-func-
tion variants in ATM. This causes decreased ability to
repair DNA double-strand breaks, leading to pro-
gressive cerebellar ataxia, immunodeficiency, and
increased risk for malignancies. A recent article
highlighted personalized targets for splice switching
ASOs in ataxia telangiectasia, depending on the
specific variants [32]. Although this is entirely pre-
clinical, the framework shows promise for develop-
ing ASOs for a subset of ataxia telangiectasia
patients.

GENE REPLACEMENT

Gene replacement therapy for childhood-onset
movement disorders is an area of extensive research
[33,34] (Table 1 and Figs. 1 and 2). Current
approaches were made possible by the success of
AAV9-based gene replacement for spinal muscular
atrophy [35]. For CNS disorders, the most common
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vectors for transgene delivery remain the adeno-
associated viruses (AAVs) given their tropism
and relative safety [36]. Current vectors have limi-
tations in their transgene capacity, biodistribution,
the immune-response to the capsid protein, and
potential transgene overexpression related toxicity
[37].

Intraparenchymal gene replacement in
aromatic I-amino acid decarboxylase
deficiency

Aromatic l-amino acid decarboxylase (AADC) is an
enzyme that catalyzes the transformation of levo-
dopa to dopamine, as well as precursors of other
amino acid neurotransmitters into their final prod-
uct (serotonin, norepinephrine, epinephrine).
Patients with AADC deficiency suffer from early-
onset severe dystonia, oculogyric crises, axial hypo-
tonia, and bulbar dysfunction and often die early in
life because of medical complications [56]. Building
on initial work for Parkinson’s disease, an intrapar-
enchymal AAV2-mediated gene therapy for AADC
deficiency was developed. This gene therapy was
first introduced in Taiwan (where there is a higher
prevalence because of a founder allele) [S7]. Stereo-
tactic delivery to the putamen reduced the fre-
quency of dyskinesia and oculogyric crises,
improving functional outcomes [58-60]. This puta-
minal gene therapy, eladocagene exuparvovec, was
approved by the EU in 2022 [61] and a recently
proposed model predicts that it extends survival
by 25 years and lowers healthcare costs [62]. A sec-
ond AAV2 gene therapy vector for AADC deficiency
targeted to the substantia nigra and ventral tegmen-
tal areas is in clinical trials and may be even more
effective because of more specific targeting of dop-
aminergic pathways [58].

Intrathecal gene replacement for spastic
paraplegia type 50

Hereditary spastic paraplegia type 50 (or SPGS0) is a
rare form of complex childhood-onset hereditary
spastic paraplegia characterized by progressive lower
limb spasticity, developmental delay and intellec-
tual disability, epilepsy, secondary microcephaly,
and brain malformations. An interdisciplinary
investigator team recently developed an intrathecal
AAV9-based gene therapy from concept to first-in-
human use in less than 3 years [63]. This highlights
the potential for similar approaches to other forms
of hereditary spastic paraplegia and pediatric move-
ment disorders due to a loss-of-function mecha-
nism. The gene therapy for SPGS50 is currently in
phase 1/2 study (NCT05518188).

1040-8703 Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.

GENE EDITING

Gene editing has the potential to become a trans-
formative platform technology that can target many
monogenic diseases (Figs. 1 and 2). Recent advances
in hematological diseases where gene editing is
employed ex vivo highlight this potential [64]. For
central nervous system diseases, delivery and effi-
cacy remain significant barriers.

DEEP BRAIN STIMULATION

Deep brain stimulation (DBS) involves stereotactic
implantation of depth electrodes to specific CNS
areas. Electrodes are connected to a battery that
delivers pulses of current at a specific amplitude,
frequency, and duration to modulate neuronal cir-
cuitry (Fig. 2) [65,66].

Deep brain stimulation for genetic
movement disorders in children

With increasing use of DBS (most commonly target-
ing the globus pallidus pars internus - GPi), there
have been multiple observations that DBS is more
effective in children with monogenic forms of dys-
tonia or dyskinesia (particularly TOR1A [67], GNAO1
[68] and KMT2B [69]). In addition, there is emerging
evidence for a positive response to GPi DBS in an
evolving number of other rare childhood-onset
movement disorders (ACTB [70], ADCYS5 [71],
ANO3 [72], EIF2AK2 [73], PANK2 [74], SGCE [75],
TAF1 [76], THAP1 [77], UBAS [78]). Independent of
cause, an important application of DBS is in the
setting of status dystonicus and refractory status
dystonicus [79"%,80,81].

Deep brain stimulation in Tourette syndrome
and self-injurious behaviors

The use of DBS for severe and pharmaco-resistant
Tourette syndrome in childhood is controversial,
given its potential for not only improvement
but also the invasive nature, risk of complications,
and the natural history of Tourette syndrome
to improve with maturity [82]. Target areas
include the thalamic centromedian parafascicular
complex and the GPi [83]. Patient selection is key,
with prior work proposing failure of behavioral
and pharmacologic therapies, high tic severity
and negative impact on quality of life as criteria
[84]. Also, at the intersection of movement disor-
ders and neurodevelopmental psychiatry are self-
injurious behaviors for which DBS is a promising
intervention, although more studies are needed
[85].
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Therapies for childhood-onset movement disorders Vogt et al.

FOCUSED ULTRASOUND FOR LESIONING

MRI-guided focused ultrasound for thalamotomy is
now an established treatment for essential tremor
and Parkinson’s disease in adults. There is growing
interest in applying this approach to refractory dys-
tonia in children, with a clinical trial looking to
compare focused ultrasound-induced pallidotomy
versus GPi-DBS in treatment-refractory dystonia in
dyskinetic cerebral palsy (NCT06036199).

FUTURE CHALLENGES IN IMPROVING THE
TREATMENT OF PEDIATRIC MOVEMENT
DISORDERS

With increasing identification of genetic disorders,
structured multicenter studies are crucial to docu-
ment the natural history of rare diseases and to build
infrastructure to test emerging therapies (Fig. 3).
Access to genomic platforms that delineate the caus-
ative variant(s) and flag potential molecular mech-
anism-based therapies is the initial step. Early
recognition is key as the therapeutic window for
progressive movement disorders is likely smaller
than currently anticipated. Cross-sectional pheno-
typing studies can establish the range of disease
manifestations, but subsequent prospective, longi-
tudinal natural history studies are needed to define
disease progression, morbidity and mortality (which
inform risk/benefit discussions for experimental
therapeutics), and for testing potential biomarkers
and endpoints for interventional trials. In the pre-
clinical development of novel mechanism-based
therapies, establishing key molecular or cellular dis-
ease phenotypes in disease models allows for in-
vitro and in-vivo proof-of-concept experiments. Fol-
lowing IND-enabling studies, a particular challenge
exists in designing phase 1/2 studies to not only test
safety but also maximize learnings from secondary
endpoints assessing efficacy. Subsequent studies
face the challenge of small patient populations
and needing to demonstrate meaningful benefit
(improvement or, more likely, slowing of progres-
sion) in a relatively short time. Additional chal-
lenges exist in the high cost associated with
manufacturing and pivotal studies, rendering some
programs commercially nonviable. This under-
scores the importance of developing platform tech-
nologies to mitigate costs, a supportive regulatory
environment, and innovative, investigator-driven,
and grant-funded clinical studies that de-risk novel
therapeutic approaches to the benefit of the rare
disease community.

To address some of these issues, the concept of
‘Clinical Trial Readiness’ has arisen. We define clin-
ical trial readiness as a state of having validated
clinical research tools and disease natural history

1040-8703 Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.

necessary for the design of efficient clinical trials.
We provide a checklist for clinical trial readiness in
Fig. 3.

CONCLUSION

The field of childhood-onset movement disorders
remains one of the most exciting and complex
within neurology. Several therapeutic modalities
treat underlying genetic/protein and cell-based
pathophysiology to network dysfunction and symp-
toms. Children with movement disorders that are
not adequately managed on their current treatment
regimen should be referred to pediatric movement
disorder specialists and multidisciplinary tertiary
care clinics where treatment can be optimized and
enrollment in research studies is facilitated.
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